Interchromosomal Homology Searches Drive Directional ALT Telomere Movement and Synapsis

نویسندگان

  • Nam Woo Cho
  • Robert L. Dilley
  • Michael A. Lampson
  • Roger A. Greenberg
چکیده

Telomere length maintenance is a requisite feature of cellular immortalization and a hallmark of human cancer. While most human cancers express telomerase activity, ∼10%-15% employ a recombination-dependent telomere maintenance pathway known as alternative lengthening of telomeres (ALT) that is characterized by multitelomere clusters and associated promyelocytic leukemia protein bodies. Here, we show that a DNA double-strand break (DSB) response at ALT telomeres triggers long-range movement and clustering between chromosome termini, resulting in homology-directed telomere synthesis. Damaged telomeres initiate increased random surveillance of nuclear space before displaying rapid directional movement and association with recipient telomeres over micron-range distances. This phenomenon required Rad51 and the Hop2-Mnd1 heterodimer, which are essential for homologous chromosome synapsis during meiosis. These findings implicate a specialized homology searching mechanism in ALT-dependent telomere maintenance and provide a molecular basis underlying the preference for recombination between nonsister telomeres during ALT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALT Telomeres Borrow from Meiosis to Get Moving

Telomere clustering is required for the homologous recombination events that maintain chromosome ends in cells relying on alternative lengthening of telomeres (ALT). New data demonstrate that damage signaling at telomeres, a likely step in activating maintenance mechanisms, induces directional movement and synapsis driven by the machinery responsible for recombination in meiosis.

متن کامل

The cytogenetics of homologous chromosome pairing in meiosis in plants.

Three activities hallmark meiotic cell division: homologous chromosome pairing, synapsis, and recombination. Recombination and synapsis are well-studied but homologous pairing still holds many black boxes. In the past several years, many studies in plants have yielded insights into the mechanisms of chromosome pairing interactions. Research in several plant species showed the importance of telo...

متن کامل

SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice.

Prior to the pairing and recombination between homologous chromosomes during meiosis, telomeres attach to the nuclear envelope and form a transient cluster. However, the protein factors mediating meiotic telomere attachment to the nuclear envelope and the requirement of this attachment for homolog pairing and synapsis have not been determined in animals. Here we show that the inner nuclear memb...

متن کامل

ALT Telomeres Get Together with Nuclear Receptors

Nuclear receptors bind chromosome ends in "alternative lengthening of telomeres" (ALT) cancer cells that maintain their ends by homologous recombination instead of telomerase. Marzec et al. now demonstrate that, in ALT cells, nuclear receptors not only trigger distal chromatin associations to mediate telomere-telomere recombination events, but also drive chromosome-internal targeted telomere in...

متن کامل

Alternative lengthening of telomeres can be maintained by preferential elongation of lagging strands

Alternative lengthening of telomeres (ALT) is a telomerase independent telomere maintenance mechanism that occurs in ∼15% of cancers. The potential mechanism of ALT is homology-directed telomere synthesis, but molecular mechanisms of how ALT maintains telomere length in human cancer is poorly understood. Here, we generated TERC (telomerase RNA) gene knockouts in telomerase positive cell lines t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 159  شماره 

صفحات  -

تاریخ انتشار 2014